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Insights into the mechanisms of action
of host defence peptides from biophysical
and structural investigations‡

Burkhard Bechinger∗

In order to better understand the mechanisms of action of linear cationic host defense peptides, biophysical and structural
investigations of their interactions with membranes and with other biomacromolecules are reviewed. In particular, an extensive
overview will be given of the topological studies of magainins in a number of different lipid environments. Furthermore,
amphipathic helices have been designed in such a manner to allow the easy control of their membrane alignment. These
peptides not only exhibit potent antimicrobial and transfection activities, but their investigation has also provided important
insights into mechanistic aspects of their biological functions. Copyright c© 2011 European Peptide Society and John Wiley &
Sons, Ltd.
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The continuously increasing resistance of pathogens against
many of the commonly used antibiotics imposes new challenges
to human health [1,2]. Possible alternatives can be found by explor-
ing natural resources, and interesting antimicrobial compounds
have indeed been discovered in the plant [3,4] and in the animal
kingdoms [5,6]. During the past decades, a large variety of different
host defence peptides have been identified that are produced
when infections occur and/or which are stored in exposed tissues
of animals and plants. These molecules protect the respective
organisms by establishing a defence system that can react in a
fast and efficient manner [7,8]. More recently they have also been
shown to exhibit immunomodulatory functions and in order to
take into account their extended spectrum of activities, they are
now often referred to as ‘host defense peptides’ [9–11]. These nat-
urally occurring bacteriocidal and fungicidal molecules can serve
as a templates for the development of more easy to produce and/or
more potent analogues [12–16]. To this end structure–function
studies and biophysical investigations are performed that result in
a better understanding of their mechanisms of action [12,17–21].

Early on, peptides from frogs and insects were among the first
to be identified and the ones investigated most thoroughly to
date are probably the members of the magainin and cecropin
families [22–26] (cf Table 1 for the amino acid sequences of the
peptides discussed in this article). These cationic linear peptides
exhibit a broad-range of antimicrobial activities when at the
same time their detailed spectrum of antimicrobial action varies
with their sequence. Interestingly, it has been demonstrated that
several host defence peptides, including magainins, also exhibit
virucidal, spermicidal and anti-cancer activities [6,15,27–30].

Magainins, cecropins and related sequences carry an overall
positive charge and are characterized by pronounced interactions
with phospholipid membranes, where many of them adopt am-
phipathic α-helical conformations [20,31–35]. By interacting with
phospholipid bilayers they have been shown to disrupt the bilayer

integrity, to cause openings, a decrease in ohmic resistance and a
concomitant collapse of the transmembrane electrochemical gra-
dients [36,37]. Therefore, it is believed that their main mechanism
of killing bacterial and fungal cells is the formation of pores and
the concomitant effects on cellular respiration [38], events which
deprive the affected organisms of their source of energy [39].

The notion that the membranes are the main target of these
antimicrobial compounds is supported by investigations of enan-
tiomers such as all-D-magainins, all-D-cecropins, cecropins with
inverted sequences (retro) or inversed D-cecropins (retroenantio),
which all possess the high antibiotic and pore-forming activities of
the parent L-sequence. These observations suggest that the cell-
killing activities of these peptides are related to direct interactions
with, for example, phospholipid membranes rather than through
specific, chiral receptor interactions [40]. A number of models
have been suggested to explain the pore forming and antimicro-
bial properties of these catonic amphipathic peptides. These are
reviewed in some detail in Ref. 41 and illustrated within Figure 1.
The models include the formation of torrodial pores where the
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Blaise Pascal, 67070 Strasbourg, France. E-mail: bechinger@unistra.fr
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peptides together with the lipid assemble into a supramolecular
arrangement of high curvature thereby transiently forming
well-defined pores [42,43]. A second model suggests that the
peptides accumulate at the membrane at an alignment parallel
to the surface [44]. Once this ‘carpet’ becomes too dense the
membrane disintegrates and opens. Third, at lower peptide
concentrations stochastic fluctuations of the in-planar peptides
within the membrane surface can explain the transient and
step-wise increases in membrane conductivity that have been
observed experimentally [41]. Finally a unifying view integrates all
these different arrangements into a phase diagram as shown
schematically in Figure 1 [41,45,46], a model which will be
discussed in more detail below.

It should be noted that more recent evidence also points to
the existence of intracellular targets albeit also in this case it

Figure 1. A schematic phase diagram is shown where the supramolecular
assemblies of peptide–lipid mixtures are illustrated as a function of the
concentration of membrane-associated peptide and the lipid composition.
Within the diagram a selected number of models are shown that have been
suggested to explain pore formation, membrane lysis and antimicrobial
action (cf text and Refs 41,46 for additional details). Note that the diagram
is intended to illustrate the concept rather than to provide detailed phase
boundaries. Depending on the peptide sequence the torroidal pore and/or
the carpet model may be applicable. Furthermore, torroidal pores may
also be formed with peptide alignments parallel to the membrane normal.

is necessary that the peptides cross the plasma membranes of
the bacterial, fungal or cancer cells. Once inside the cell they
can interact with biological macromolecules and/or organelles
(for reviews refer [15,27,28,47,48]). In this article biophysical
investigations of the membrane interactions of magainins and
related peptides are reviewed with some focus on the work
performed in our own laboratory.

Table 1. Sequences of peptides presented in this review

Magainin 2 GIGKF LHSAK KFGKA FVGEI MNS-NH2

PGLa GMASK AGAIA GKIAK VALKA L-NH2

Cecropin A KWKLF KKIEK VGQNI RDGII KAGPA VAVVG QATQI AK-NH2

LAH4 KKALL ALALH HLAHL ALHLA LALKK A-NH2

Distinctin chain 1 E NREVP PGFTA LIKTL RKCKI I
|

Distinctin chain 2  NLVSG LIEAR KYLEQ LHRKL KNCKV

Alamethicin (F50/7) Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Gln-Gln-Phl

Ampullosporin A Ac-Trp-Ala-Aib-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Gln-Leu-Aib-Gln-Lol

Zervamicin IIB Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl

The peptides composed exclusively of the 20 conventional amino acid residues are presented by the one-letter code for better visibility and the
peptaibols are listed by the three letter code. The following abbreviations are used for the non-standard residues of the latter compounds: Aib,
α-aminoisobutyric acid; Iva, D-isovaline; Hyp, trans-4-hydroxy-L-proline; Phl, L-phenylalaninol; Lol, L-leucinol. The N- and C-terminal protecting groups
are Ac- for acetyl- and NH2 for the carboxyamide, respectively. The two chains of the disticintin heterodimer are covalently connected by a cystine
bond close to their C-terminus (the two sequences have been aligned accordingly).

J. Pept. Sci. 2011; 17: 306–314 Copyright c© 2011 European Peptide Society and John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci
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Figure 2. The correlation between the 15N chemical shift and the membrane topology of labelled helices is shown. These experiments require that
peptides are labelled with 15N at one of their amide bonds within the helical domain, reconstituted into uniaxially oriented phospholipid bilayers [63] and
the proton-decoupled 15N solid-state NMR spectra recorded. Whereas transmembrane helices resonate around 200 ppm those that are oriented parallel
to the surface exhibit 15N chemical shifts <100 ppm [64]. The technique has early on revealed an alignment of magainins as well as of other cationic
amphipathic peptides parallel to the bilayer surface (15N chemical shifts <100 ppm; Table 2).

Investigations of the Membrane Topology
of Host Defence Peptides

Among the linear cationic antimicrobial peptides, magainins are
probably the ones that have been investigated most intensely by
biophysical approaches including solid-state NMR spectroscopy
(Figure 2) ( [49–53]). Using a variety of techniques a number
of cationic host defence peptides were found to preferen-
tially align parallel to the surface when reconstituted into a
wide variety of phospholipid bilayers (Table 2), a finding that
agrees well with their amphipathic and highly charged character
(reviewed in Ref. 41). This alignment of the peptides parallel
to the membrane surface was early on described [50,54,55],
is consistently observed also for magainin analogues [56–58]

as well as for a number of related peptides that were inves-
tigated more recently [32,59–61]. Indeed, molecular modelling
calculations visualize how magainin 2 can cause the formation
of membrane lipidic pores without the need to adopt trans-
membrane orientations or peptide–peptide contacts [62]. To
understand how the peptides form pores in such a configuration
requires a more profound analysis and the consideration of novel
mechanisms involving stochastic fluctuations, membrane phase
properties as well as modulations of the bilayer shape and phys-
ical chemistry. A number of biophysical investigation that have
altered our view on how these peptides interact with membranes
are reviewed in Ref. 41 and a selection of them as well as some
investigations performed thereafter will also be presented in this
article.

wileyonlinelibrary.com/journal/jpepsci Copyright c© 2011 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2011; 17: 306–314
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Table 2. Solid-state NMR and oriented circular dichroism investigations of magainin 2 and PGLa in oriented bilayers

Lipid composition

Peptide
concentration

(mole%)
Labelled

site/s
NMR

nucleus/OCDa
Hydration

(r.h.)
Tilt

angle (◦) References

Magainin 2

POPC/POPG 3 : 1 3 A15 15N 93 IP 54

POPE/POPG 3 : 1 3 I2 15N 93 IP 65

POPC/POPG 3 : 1 – – – – IP –

POPC – – – – IP –

POPC/POPG/chol 3 : 1:4 – – – – IPb –

POPE/POPG 3 : 1 3 8 sites 15N 93 90c 66

POPC/POPG 4 : 1 4 F16,V17 15N 93 IP 67

POPC/POPG 3 : 1 – F16 15N – IP 68

– U–15N 15N – 90 69

DMPC/DMPG 3 : 1 <2 – OCDa – IP 70

3.3 – – – 20% TM –

10 – – – Mostly TM –

PGLa
POPE/POPG 3 : 1 2 Several 15N 93 IPd 49

POPC/POPG 3 : 1 – A20 15N – IP 67

DMPC 0.5 Severale 19F, 2H – 89–97f 71–73

2 – – – 55–57f –

PGLa in the presence of equimolar amounts of magainin2

phosphatidylcholinesg 2 A10, A14 15N 95,100 5 topologiesg –

DMPC/DMPG 3 : 1 2 Severale 2H – 20 74

DMPC 2 Severale 2H – 20–22 71

DMPG, 1,2-dimyristoyl-sn-glycero-3- phospho-(1′-rac-glycerol); IP, in-plane; POPE, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; POPG,
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol); r.h., relative humidity; TM, transmembrane.
a Oriented circular dichroism.
b In the presence of cholesterol the chemical shift increases by 16 ppm indicating less tilted alignments.
c Structure calculation using eight parameters from four consecutive sites indicates an α-helical conformation oriented parallel to the surface.
d The analysis of powder pattern line shapes indicates that residues 3 and 6 exhibit a high degree of motion, whereas the C-terminus is immobilized.
e In contrast to 15N solid-state NMR spectroscopy, labelling of several sites is required to obtain topological information from 19F or 2H solid-state
NMR spectra.
f The transition between the IP (tilt angle around 90◦) and the more ‘tilted’ state (tilt angle 55◦) is favoured by the addition of DMPG, a reduction of
r.h. and/or by increasing the peptide/lipid ratio.
g When the PGLa alignment is tested as a function of membrane hydrophobic thickness (di-C20:1-PC, POPC, DMPC, di-C12:0-PC and di-C10:0-PC) five
different configurations have been observed ranging from IP to TM (Salnikov & Bechinger, unpublished).

For example, the heterodimeric peptide distincin has been
studied in oriented phospholipid membranes using a combination
of 15N and 2H solid-state NMR spectroscopy [60]. As the two nuclei
provide highly complementary information, it is possible to obtain
accurate tilt- and rotational pitch angular information from a
peptide labelled simultaneously with 2H3-alanine and at a 15N
amide position [75]. The solid-state NMR measurements indicate
that the distinctin dimer undergoes pronounced conformational
changes when inserting into the membrane [60]. In the bilayer
environment the amphipathic helix of chain 2 aligns at a tilt
angle of 88◦ relative to the membrane normal thereby anchoring
the polypeptide in a stable fashion. In contrast, chain 1 is more
loosely associated with the lipid bilayer at a tilt angle of 66◦. When
compared to the membrane interactions of the isolated chain 1 this
latter value is decreased by about 5◦ in the heterodimer. Functional
studies in combination with this structural data suggest that the
membrane interactions of distinctin are dominated by chain 2. It
has been suggested that the role of chain 1 is to protect the peptide
in solution from proteases through a compact dimer of dimer
arrangement [76]. The studies on dimers thereby provide valuable
insight into the role of peptide–peptide and peptide–lipid
interactions within the membrane environment (cf also Ref. 13).

Histidine-Rich Models for Amphipathic Linear
Peptide Antimicrobials

In order to further test if in-planar configurations explain both the
pore formation and the antimicrobial activities of amphipathic
peptides the so-called LAH4 sequence was designed in which the
polar face consists of histidines rather than lysines and where the
hydrophobic region consists of alanine and leucines (Table 1). Two
lysines at each terminus assure good solubility of the peptides in
aqueous environments. The histidines exhibit pK values around
5.5 and this modification therefore allows one to tune the
hydrophobic moment of these sequences by changing the pH
[35]. These histidine-rich sequences exhibit a high propensity
to adopt α-helical conformations in membrane environments
[35,77]. The regions encompassing the α-helical structures in
the presence of dodecylphosphocholine micelles environments
are pH-dependent and shift from a C-terminal (encompassing
residues 9–24 at pH 4.1) to a more N-terminal localization (residues
4–21 at pH 7.8). At intermediate pH two shorter helices are
interrupted by a hinge region formed by residues 10–13 [35], and
it is believed that this flexible domain facilitates the membrane
insertion during the in-plane to transmembrane transition.

J. Pept. Sci. 2011; 17: 306–314 Copyright c© 2011 European Peptide Society and John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jpepsci
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When the topologies of LAH4 peptides were investigated
in oriented phospholipid bilayers an alignment parallel to the
bilayer surface was observed at pH <6 when the histidines are
cationic, whereas transmembrane orientations are found when the
histidines are discharged [78,79]. As the transition is reversible it is
possible to evaluate the transfer energy of amino acid side chains
from the membrane interface to the membrane interior. This has
been achieved by modulating the composition of the polar face
through amino acid replacements and by analysing the resulting
shifts in the transition pH [80,81]. Furthermore, dynamic light
scattering indicates that the peptides form suspensions of small α-
helical aggregates at neutral pH, but exhibit a hydrodynamic radius
which agrees with an extended monomer in acidic solutions [82].

Interestingly, members of the LAH4 family of peptides exhibit
membrane pore-formation in model membranes [82] and antimi-
crobial action at both neutral and, to an even larger extent, at acidic
pH thereby indicating that a well-defined transmembrane channel
structure is not required to explain its biological actvities [77]. More
recent investigations show that derivatives of LAH4 exhibit potent
antimicrobial action against a number of clinical isolates, and these
activities are more pronounced when the peptides occur in an in-
planar orientation [83]. This has allowed for the design of a third
generation of LAH4 peptides exhibiting interesting antimicrobial
and antiplasmodial activities also under in vivo conditions [58].

Different Supramolecular Assemblies
are Formed by Antimicrobial Peptide–Lipid
Mixtures

The experimentally observed in-planar topology of amphipathic
peptides is concomitant with an alignment of their hydrophobic
moment parallel to the bilayer normal. Structure–activity studies
has revealed that the pore-forming and antimicrobial activities of
the peptides correlate with this topology [77]. The interaction of
the peptides with the membrane interface results in a decreased
order parameter of the phospholipid fatty acyl chains and
considerable curvature strain on the membrane [84–86]. The
peptide–lipid interactions thereby resemble in many aspects the
membrane interactions of detergents or detergent-like molecules
[46]. At high peptide concentrations such interactions cause the
disruption of the bilayer integrity as suggested by the ‘carpet
model’ [44]. However, it should be kept in mind that at lower
detergent (peptide) concentrations their effect on the membrane
supramolecular assembly may be quite different and range from
channel formation to an even more stable lipid bilayer packing
[41,46], the end result being much dependent on a variety
of environmental factors such as lipid composition, peptide
concentration, pH and temperature (Figure 1).

On the basis of the experimental findings it has been
suggested that, in analogy to detergents, a full description of
the peptide–lipid interactions requires extensive phase diagrams
(Figure 1) where the previously suggested mechanisms such as
carpet- [44], torroidal pore-, wormhole- [42,43] and lysis model
are represented by distinct areas [41,46]. Notably, our improved
understanding of the peptide–lipid interactions, and in particular
the realization that the peptides are active in their surface-
associated state, has been used to successfully design short
sequences as well as peptide mimetics with potent antimicrobial
properties [87–94].

The Effects of Membrane Lipid Composition on
Antimicrobial Peptides

An important variable of such phase diagrams is the lipid
composition of the membrane which is indeed quite different
when bacterial and eukaryotic membranes, or when membranes
from different species are compared to each other [46]. Differences
in the macroscopic phase properties can therefore be at least a part
of the explanation how antimicrobial peptides kill one species but
not another or how they select bacterial over eukaryotic cells [46].
In particular, the surface charge density of the membrane has been
shown to exhibit an important effect on the amount of membrane-
associated peptide [95] and in view of the presence of negatively
charged lipopolysaccarides and anionic lipids at the outer surface
of bacterial cells, electrostatic interactions have been suggested to
be an important determinant for the selectivity of the peptides for
bacterial over eukaryotic and for tumour over healthy cells [95–99].

When the existing data for magainin 2 are reviewed the
peptide exhibits stable in-planar membrane alignments under all
conditions so far investigated (Table 2) with only subtle changes
that have been detected in the presence of cholesterol [65]. In
contrast, the membrane interactions of PGLa in 1,2-dimyristoyl-sn-
glycero-3-phosphocholine (DMPC) membranes are dependent on
the peptide-to-lipid ratio and bilayer hydration, with two distinct
alignments, one in-planar and another one whose tilt angle differs
by about 30◦ (Table 2).

Despite its stable in-planar topology some interesting differ-
ences have also been observed for magainin even when quite
similar lipid systems, such as 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) and DMPC bilayers, are compared to
each other. First, neutron diffraction experiments indicate that in
the presence of this peptide water penetrates the hydrophobic
region of DMPC but not POPC membranes [42]. Second, subtle
differences have been observed when the macroscopic phase
properties of membranes composed of these lipids have been
studied as a function of magainin 2 concentration by 31P
solid-state NMR spectroscopy [100].

In contrast to most charged amphipathic sequences that
have been shown to adopt stable surface-associated states
[32,50,54–61], a range of different topologies has been observed
for other membrane-associated peptides, in particular the less
polar sequences [101–104]. Therefore, a full description of am-
phipathic peptides needs to consider a series of equilibria where
they move from the water phase to an interface-associated state,
followed by membrane insertion and oligomerisation [105–108].
Solid-state NMR spectroscopy (Figure 2) and oriented circular
dichroism have proven valuable techniques to investigate such
transitions between in-plane and transmembrane alignments
where the membrane topologies are a function of hydration,
peptide-to-lipid ratio and lipid composition [78,104,109,110].
A prime example is the LAH4 peptide described above, which
changes alignment in a pH-dependent fashion and has thereby
allowed us to study the in-plane to transmembrane equilibrium
in a highly controlled manner [78–81]. Other examples are found
within the peptaibol family (Table 1), amphipathic helical peptides
containing Aib residues and other predominatly uncharged
amino acid side chains [111]. These peptides have been described
to form channels after having undergone a number of topological
transitions [17,106].

The uncharged dodecameric alamethicin peptide (cf Table 1),
paradigm for the formation of pores by the association into
transmembrane helical bundles, exhibits indeed transmem-

wileyonlinelibrary.com/journal/jpepsci Copyright c© 2011 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2011; 17: 306–314
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brane alignments in DMPC and POPC [112–114], but not in
phosphatidylethanolamine membranes [104,115]. For other
peptaibols, such as the 15 residue zervamicin II or ampullosporin A
it has been shown that their alignment depends on the thickness
of the phosphatidylcholine membranes and that they exhibit
in-planar alignments in POPC or DMPC but transmembrane
orientations in membranes composed of fatty acyl chains of
12 or 10 carbon atoms [114,116]. As it is generally believed
that 1-palmitoyl-2-oleoyl-phospholipids represent well the
hydrophobic thickness and the fatty acyl composition of natural
membranes the question therefore arises if the antimicrobial
effect of even these more hydrophobic peptides is solely related
to the formation of transmembrane helical bundles, or if their
spectrum of membrane-pore forming activities also encompasses
a number of additional possibilities that are related to the carpet,
wormhole/torroidal pore or detergent-like models established for
the cationic linear peptides (Figure 1) [41,42,44,46]?

It is of interest to note that in membranes composed of
dimyristoylphospholipids PGLa undergoes a transition from
in-planar and ‘tilted’ alignments to a transmembrane orientation
upon addition of equimolar amounts of magainin 2 [71] which has
been correlated to the synergistic enhancements of antimicrobial
activities which are observed when magainin 2 and PGLa are tested
in combination with antimicrobial assays [20,117,118]. Synergistic
enhancements have also been observed for other mixtures of
antimicrobial compounds [119–121]. As both PGLa and magainin
2 exhibit in-planar topologies when equimolar mixtures of the two
peptides are investigated in POPC bilayers (Salnikov & Bechinger,
unpublished) it remains unclear how such synergies arise but one
could imagine that one component of a mixture has a strong
potential to weaken the membrane or the lipopolysaccaride layer
thereby allowing the passage of a second component. The site of
action can thus be intracellular or a membrane component which
would otherwise remain inaccessible to the latter [47].

Peptide-Induced Condensation
and Flocculation Phenomena

It is noteworthy that cationic peptides have been demonstrated
to efficiently complex and condensate nucleic acids [122,123].
Among those, the designed antimicrobial peptide LAH4 has
been investigated in some detail and it has been shown that
this peptide exhibits potent transfection activities for DNA and
siRNA [124,125]. Structural investigations indicate that in the
DNA transfection complex about one peptide associates with two
base pairs predominantly by electrostatic interactions [126], a
density that is reduced by almost 50% upon acidification of the
medium such as it occurs in the endosome [127]. The liberated
peptide is thus available for membrane interactions and lysis of
the endosomal compartment concomitant with the release of the
nucleic acid into the cell interior. Such biophysical and structural
insights have helped to improve the biological activities of this
family of peptides [128–130].

Furthermore, it has been observed that the peptides asso-
ciate with negatively charged vesicles thereby neutralizing the
membrane surface charge density. When neutrality is reached
the vesicles associate to form large flocculating complexes [131].
Although this association results in fusion at high ratios of acidic
phospholipids, vesicle association is reversible at lower phos-
phatidylserine concentrations. Such observations suggest that

cationic peptide antimicrobials have the capacity to cause con-
densation and flocculation of biological macromolecules inside
the cell, to cause membrane fusion and/or the aggregation of
whole cells which concomitantly affects the survival and pro-
gression of such microorganisms. These characteristics and the
self-assembling properties of cationic peptide antimicrobials have
so far not been investigated in much detail [70,132,133], and
despite the decades of intensive investigations since their first dis-
covery many questions about their mechanisms of action remain
to be resolved.
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